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Carex sect. Vesicariae is a group of about 30 sedge species widespread in temperate and cold regions of Eurasia and North
America. In this study we performed a phylogenetic analysis of ten taxa (9 species and one subspecies) found in Siberia
based on two plastid sequences (mazK and atpF-H) and the nuclear ribosomal ITS2 sequence. We also developed a novel
sequence marker for the genus Carex, an intron of the nuclear 4sp90 gene, which was found to be several times more
variable than plastid and nuclear ribosomal sequences. Total nucleotide variation within the Vesicariae section was found
to be very low, comparable to that within single other sedge species. Phylogenetic analysis supported the existence of two
groups within this section: clade A (C. vesicata, C. vesicaria, both subspecies of C. saxatilis and C. pamirica) and clade B
(C. rostrata, C. mollissima, C. jacutica, C. rotundata and C. membranacea). Carex rhynchophysa holds an intermediate
position between these groups. The main morphological difference between these clades lies in the nature of the transition
of the utricle into the beak: it is gradual in clade A and abrupt in clade B. This division is in good accordance with the
results of previous allozyme studies and with current taxonomy. These results may become the basis for consideration of

subsectional taxa within this section.

The genus Carex L. (family Cyperaceae Juss.) is one of the
largest and most widespread genera of flowering plants; it
includes over 2000 species (Reznicek 1990). For many sec-
tions of this genus, morphological differences between spe-
cies are often subtle, which makes it hard to reconstruct their
phylogenetic relationship using morphological data alone.
This situation is complicated by the existence of a great
number of interspecific hybrids, which have intermediate
habitus in comparison to parent species and may be fertile
or partly fertile (Cayouette and Catling 1992, Egorova
1999). In the last decade, molecular genetic markers have
proven to be very useful for studying the relationships of
species and subgeneric taxa within the genus Cuarex
(Roalson et al. 2001, Heindrichs et al. 2004, Waterway and
Starr 2007, Waterway et al. 2010).

The section Vesicariae Meinsh. is a member of subgenus
Carex; it contains over 30 species and subspecies (Mackenzie
1935, Chater 1980, Kozhevnikov 1988, Egorova 1999, Ball
and Reznicek 2002, Dai et al. 2010). Species of this section
are widespread in temperate and cold regions of Eurasia and
North America, usually in swamp and waterside habitats. Ten
species and subspecies are found in Siberia (Malyshev 1990).

Species belonging to the section Vesicariae have the
following characteristics: 1) 1-5 upper spikes are male,
and the other 2-5 spikes are female, 2) the lowest bract is

sheath-less; blade is longer or equal to the inflorescence,
3) utricles are inflated, bulliform membranaceous or thin-
coriaceous, usually ovoid, 3-8 mm in length; the beak of the
utricule is generally elongate, bidentate (more rarely, emar-
ginate or entire), 4) 2—3 stigmas are present, 5) rhizomes are
creeping (Egorova 1999).

Most taxonomists have not formally recognized subsec-
tions or other groups within section Vesicariae (Mackenzie
1935, Reznicek 1990, Egorova 1999, Reznicek and Ford
2002, Dai et al. 2010). This section is sometimes merged
with the sect. Pseudocypereae Tucker. ex Kiik. (Kreczetowicz
1935, Ball and Reznicek 2002) and/or sect. Carex L.
(Kreczetowicz 1935). Ford et al. (1991, 1993) and Ford and
Ball (1992) divided this section into two informal species
groups, the short-beaked and long-beaked taxa. The short-
beaked species (C. saxatilis L., C. membranacea Hook.,
and C. rotundata Wahlenb.) are characterized by arctic or
high boreal distribution, weakly nerved perigynia, and
short beaks (<1 mm long) that are indistinctly toothed at
the apex, while the long-beaked species (C. rostrata Stokes,
C. vesicaria L. and C. utriculata Boott) have a more tempe-
rate distribution, prominently nerved perigynia, and long
beaks (> 1 mm long) that are distinctly toothed at the apex.
This division, however, was not well supported by allozyme
analysis: species of the long-beaked and short-beaked groups



were intermixed and the authors concluded that these
informal groups are not monophyletic (Ford et al. 1993).

Kreczetowicz (1935) combined species of the sect.
Vesicariae together with the sectt. Carex, Rostrales Meinsh.
and Pseudocypereae into a large sect. Pompholyx V. 1. Krecz.
We should note that the names of the cycles and rows
specified by Kreczetowicz mentioned below are invalid
according to the paragraph 36.1 of the ‘International code
of botanical nomenclature’ (McNeill et al. 2006), because
their descriptions do not include Latin diagnosis. This sec-
tion is divided into five cycles, and the species of the section
Vesicariae are divided between two cycles:

cycle Ampullaria V. 1. Krecz.
C. rhynchophysa C. A. Mey.
C. jacutica V. 1. Krecz.
C. inflata Huds.
C. stenolepis Less.
C. rotundata
C. utriculata

cycle Vesicularia V. 1. Krecz.
row Chlorostachyae V. 1. Krecz.
C. vesicaria
C. vesicata Meinsh.
row Poecilostachyae V. 1. Krecz.
C. grahamii Boott.
C. dichroa (Freyn) V. 1. Krecz. (sine auct. comb.)
C. pamirensis C. B. Clarke (priority name
C. pamirica (O. Fedtsch.) O. et B. Fedtsch.))
row Melanostachyae V. 1. Krecz.
C. saxatilis
C. procerula V. 1. Krecz.
C. membranacea

These cycles were divided based on the nature of the tran-
sition between the utricle and the beak (this transition
is abrupt in the species of the cycle Ampullaria and grad-
ual in the cycle Vesicularia). Kreczetowicz (1935) treated
C. mollissima Christ as belonging to a separate sect. Malacocarex
V. L. Krecz. together with C. planiculmis Kom. (currently
included into sect. Anomalae (Carey) Mackenzie) based on
inflorescence characters (upper spikelet is staminal, other
35 flowers are pistillate; spikelets are pedunculate, standing
or drooping); however, other taxonomists have not accepted
this treatment.

In this study, the section Vesicariae is treated according
to Egorova (1999). The following species and subspecies
found in Siberia were studied: C. rostrata, C. rhynchophysa,
C. jacutica, C. rotundata, C. vesicaria, C. vesicata, C. pamirica
subsp. pamirica, C. pamirica subsp. dichroa (Freyn) T. V.
Egorova, C. saxatilis L. subsp. laxa (Trautv.) Kalela, and
C. mollissima. In addition, we also sampled C. capricornis
Meinsh. ex Maxim. and C. pseudocyperus L. belonging to the
closely related sect. Pseudocypereae as outgroup.

The aims of this work were 1) to study genetic variation
within the species of the section Vesicariae using plastid and
nuclear sequences, including a novel nuclear marker, the intron
of the hsp90 gene developed by us, and 2) to reconstruct phy-
logenetic relationships in this section using sequence data.

Material and methods

Herbarium specimens of the species of Carex sect. Vesicariae
were taken from the NSK Herbarium. For each taxon, we
sampled 3—7 specimens from distant geographic locations
(except for outgroup species). Details on the specimens are
given in Table 1.

Total DNA was extracted from 10-100 mg of dried
leaves. Tissues were ground with sterile sand using a mortar
and a pestle and incubated 4 h at 65°C in a buffer contain-
ing 3% CTAB, 1.4 M NaCl, 30 mM Tris-HCI (pH = 8.0),
and 2 mM EDTA. DNA was extracted with chloroform
and precipitated with isopropyl alcohol. After precipitation,
DNA was dissolved in distilled water and purified on silica
columns according to the manufacturer’s instructions. DNA
obtained using this method allowed us to reliably amplify
sequences from specimens up to 50 years old (the oldest
specimen in this study was collected in 1958).

PCRs were performed in a 25 pl volume reaction contain-
ing 1.5 mM MgCl,, 65 mM Tris-HCI (pH = 8.8), 16 mM
(NH,),SO,, 0.05% Tween-20, 0.2 mM of each dNTP,
0.3 mM primers, and 1 unit of recombinant Taq polymerase.

Because DNA extracted from herbarium specimens
is usually highly fragmented, we designed primers so that
the resulting fragment was no longer than 600 bp. Primers
for ITS2 (CITS2-F2, 5-CAACG-GATAT-CTCGG-CTC
TC-3’, CITS2-R2, 5-GATTC-GCTCG-CCGTT-ACT
AT-3") and matk fragment (central portion of the matk
gene) (matK-1, 5-TTCAA-ATCCT-TCAAT-GCTGG-3,
matK-3, 5-TGAGA-GGAAG-GACTG-GAACT-AA-3')
were designed using the sequences of mazK and the nuclear
ribosomal cluster of various Carex species obtained from
GenBank. Primers for the atpF-H intergenic spacer were
adopted from Fazekas et al. (2008). Because there was
a significant difference of melting temperature between
these primers, we designed a nested forward primer (AtpF2,
5-CCCAA-GAAAA-CGAAA-GAATC-3").

Primers for the /5p90 gene have been reported to amplify
a fragment of a presumable single-copy heat-shock protein
gene in various plant taxa (Steele et al. 2008). The original
primers from that study (hsp90-Fw, 5-ACGGA-CAAGA-
GCAAG-CTCGA-TG-3’, hsp90-Rv, 5-TTGTA-GTCTT-
CCTTG-TTCTC-AG-3") amplified a fragment about 1500
bp long, which contained an intron about 400 bp long. This
intron turned out to be rather variable, and specific primers
amplifying a 3" part of this intron were designed (HSP-s1,
5" TGACC-CTTTA-CCTCA-AGGAT-G-3’, HSP-s2, 5'-
GCGCT-CCTCA-AGATA-CTCCA-3"). In some cases the
resulting amplicon was a mixture of sequences of different
length as the result of length polymorphism in a poly-T
sequence. For some specimens, the Asp90i amplicon was
cloned into pBluescript and several clones for each specimen
were sequenced; for others, sequences read from both prim-
ers were concatenated in the poly-T region. All sequences
obtained in this study were deposited in GenBank under
accession no. JN314437-JN314629 (Table 1).

Phylogenetic trees using minimum evolution (ME),
maximum parsimony (MP), and maximum likelihood (ML)
algorithms were constructed using the MEGA program
(Tamura et al. 2011). Branch support was calculated using
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JN314580,
JN314584—
JN314586,
JN314597

JN314590
JN314588
JN314578-
JN314622
JN314620
JN314621

JN314458
JN314459
JN314452
JN314481
JN314482
JN314483

JN314520
JN314521
JN314527
JN314522
JN314523
JN314525

JN314557
JN314543
JN314539
JN314574
JN314575
JN314576

S. V. Ovchinnikova
I. N. Shekhovtsova,

A. A. Petruk

A. A. Petruk
I. Makhotkov, N. Lashchinskii

I. N. Shekhovtsova,
S. G. Kazanovskii,
O. Anenkhonov

S. Bubnova

21 Aug 2007
1 Aug 2010
17 Jul 2007
11 Jul 2001

26 Jun 1984
11 Jul 1986

476

453 m, 53005'59.1"N,

Primorskii ridge, eastern shore of |. Baikal, source

left bank. h= 1954 m, 51059’30.7"N,
of r. Sarma. h

10100043.1"E
Irkutsk oblast, Slyudyanka region, t. Kultun. h

m, 51042'59”N, 103042'30"E
Irkutsk oblast, Olkhon region, Pribaikal NR,

106051'41.5”E
Zhuravlevo

|. Rybnoye
Omsk oblast, Shcherbakul region, 1. Gladkoe

Buryatia, Okinskii region, I. llchir, source of r. Irkut,
Buryatia, Kyakhta region, 4 km from v. Polkanovo,
Kemerovo oblast, Promyshlennaya region, near t.

subsp. dichroa

pamirica

C. pamirica

C. pamirica
subsp. dichroa

subsp.
C. pseudocyperus

C. pamirica
C. capricornis
C. pseudocyperus

C141
C142
C004
C143
Cl44
C146

the bootstrap test; 1000 replications were performed for each
algorithm. Evolutionary distances for ME were computed
using the maximum composite likelihood model. MP trees
were obtained using the close-neighbor-interchange (CNI)
algorithm. The Tamura—Nei 3-parameter model was used
for ML. Bayesian analysis was performed using MrBayes
(Ronquist and Huelsenbeck 2003). Two simultaneous
independent analyses were run from different random start-
ing trees using four chains of ‘metropolis coupled Monte
Carlo’ simulations for 1000 000 generations, sampling a tree
every 100 generations; the first 25% of trees of each run were
discarded. The following substitution models were chosen
by MrModeltest (Nylander 2004) based on hierarchical like-
lihood ratio tests: HKY for /sp90i and matk, HKY +1 for
ITS2, and F81 for aspF-H.

Results

ITS2 variation

The ribosomal ITS2 sequence is one of the most widely used
in phylogenetic studies (Schultz and Wolf 2009). Within
this sequence we found ten variable positions in 41 studied
sequences, five of them parsimony informative (Table 2).
However, for all these five sites sequences with heterozygous
positions were observed; as the result, no clades were identi-
fied in the ITS2 tree (not shown). Sequence heterozygosity
may be the result of interspecific hybridization, of coex-
istence of rRNA variants within individuals, or be due to
incomplete lineage sorting. We conclude that ITS2 seems
to be of little use for barcoding or phylogeny reconstruction
purposes within the section Vesicariae.

atpF-H spacer variation

We found only one nucleotide substitution and three indels
in the studied 499 bp sequence. A 8 bp long insertion was
characteristic for specimens of C. rostrata; two insertions 7
and 9 bp long were found in the C042 C. saxatilis subsp.
laxa and C130 C. vesicata specimens, respectively. The
only substitution (G<<>A in the 454 position) divided
our sample in two parts: a group containing C. vesicata, C.
vesicaria, C. saxatilis subsp. laxa, and both subspecies of C.
pamirica (further referred to as clade A; below) and a group
comprising C. mollissima, C. jacutica, C. rotundata, and
C. rostrata (clade B) plus C. rhynchophysa. Sequences of C.
saxatilis subsp. saxatilis from other studies from GenBank

(F]548447, F]548449-F]548451) fell into the first group,

Table 2. Sequence variation of the studied molecular markers
within the section Vesicariae.

atpF-H matK  ITS2 hsp90i

Sequence length 490-500 591 438  314-366

Number of variable sites 1 12 10 31

Number of parsimony- 1 3 5 11
informative sites

Number of indels 3 - - 5

Number of sequences 47 44 41 35
sampled




and C. membranacea accessions (F]548426-F]548432) fell
into the second group.

matK variation

One of the three parsimony-informative sites (G>A
substitution in the position 60) was characteristic for
C. mollissima specimens; a G<>T substitution in posi-
tion 502 again divided our sample into the same groups as
mentioned above; and one C>T substitution was char-
acteristic for C. rhynchophysa, C. jacutica, and all but one
C. rotundata specimens. Again the C. saxatilis subsp. saxatilis
GenBank sequences of other authors (FN668460, F]5481306)
fell into clade A; C. membranacea GenBank sequences
(FJ548112, FJ548114) were identical to those of C. rostrata
and C. mollissima.

Thus, the plastid marK and appF-H sequences are also
characterized by low sequence diversity, and we conclude
that none of these three generally used sequences can be used
for species identification, except for a few species.

hsp90i variation

In addition to these three sequences, we developed a novel
sequence marker, the Asp90i intron sequence. Sequences
variation in hsp90i was more than in ITS2 and plastid mark-
ers taken together (Table 2). The main disadvantage of this
sequence marker is length polymorphism in the central
poly-T stretch in about a third of the studied specimens,
which forced us to clone the amplicons.

Sequences of hsp90i of clades A and B differed by six
nucleotide substitutions and two indels (Table 3). Within
clade B, all species could be reliably identified by combina-
tions of characteristic indels and/or substitutions (Table 3).
In contrast, almost no differences were found within clade A;
one substitution (C>T in 348 position) was characteristic
for C. saxatilis subsp. laxa; and there were no characteris-
tic substitutions among C. vesicaria, C. vesicata, and both
subspecies of C. pamirica. C. rhynchophysa grouped together
with clade A: it shared all characteristic substitutions and
indels with it, but had two additional substitutions in the
positions 342 and 357 that distinguished it from both clades
A and B.

Discussion

Sequence variation within the section Vesicariae

Our results demonstrate that the overall sequence variation
within the section Vesicariae is very low; in fact, species of
clade A were indistinguishable even using all four mark-
ers. Even both plastid sequences of the outgroup species C.
pseudocyperus and C. capricornis differed from the species of
sect. Vesicariae section by only 3 and 4 nucleotide substitu-
tions, respectively. This low variation is especially striking if
we compare it to intraspecific variation in other Carex spe-
cies. For example, Yano et al. (2010) found 28 substitutions
and 16 haplotypes in ~2000 bp of plastid sequences of the
C. conica Boott complex. King and Roalson (2009) found
57 different haplotypes in an 7pL16 plastid gene fragment

Table 3. Characteristic substitutions and indels within the studied species of Carex sect. Vesicariae. '=TCTTATAG, 2= GATA, 3=A, 4= AAATTTA, >= GAACTAGACATCATCGCATTTTTAGTCTTGATTA

GATAAATGTG, ¢ = GTCCATGTT.

hsp90i
227

atpF-H

33

matk
318

291 295 342 346 348 357 359

246

36 37 57 111 121 202 213

502 454

60

Species

ins*

A

C. rhynchophysa

Clade A

ins

C. vesicaria
C. vesicata

ins

ins

G
G

C. pamirica subsp. pamirica
C. pamirica subsp. dichroa

C. saxatilis subsp. laxa

Clade B

ins

TY

ins

del5

ins3 A/R

ins

ins!

C. rostrata

del® C

T

T

C. rotundata

ins? ins

A

C. mollissima
C. jacutica

ins




756 bp long in North American C. macrocephala Willd. ex
Spreng. Other studies reported lower intraspecific variation,
varying from 2 to 10 substitutions within different plastid
markers (Senni et al. 2005, Schénswetter et al. 2006, Puscas
et al. 2008), which is comparable with sequence variation
within the whole Vesicariae section.

Interspecific hybrids

There is a widely supported opinion that the genus Carex is
characterized by numerous interspecific hybrids (Cayouette
and Catling 1992, Egorova 1999). We have found one clear
case of hybridization between the A and B clades, the C113
specimen originally identified as C. jacutica. Its plastid haplo-
types belong to the B clade, and its nuclear Asp90: sequences
to the A clade. On the whole, this specimen is morphologi-
cally most similar to C. jacutica: its stems are 30 cm high,
there are 3 motley-brown male spikes 1-2 cm long and
3 female spikes 0.7-2.0 cm long, oblong or ovoid, subsessile,
or the lowest spike having a short peduncle up to 2 cm long.
The lowest bract is shorter than the inflorescence. Utricules
are reverse ovoid, swollen, 4.0-4.5 mm long, green (brown
near the beak), veined, subsessile, abruptly narrowed into an
elongated beak 0.9-1.2 mm long. However, the C113 speci-
men somewhat differs from C. jacutica by having scarcely
emarginate, more rarely bidentate-emarginate beak (in con-
trast to the one with short teeth in C. jacutica) and by the
presence of flowers with 2 and 3 stigmas. Parent species of this
specimen cannot be identified precisely based on the studied
sequences. However, we believe that C. saxatilis subsp. laxa
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is the most probable parent species of this hybrid, because 2
stigmas and a scarcely emarginate beak are characteristic for
this species. In addition, C. saxatilis subsp. laxa is the only
representative of the clade A that has been reported from the
region where the C133 specimen was collected. This speci-
men appears to be fertile: utricules contain full-developed
fruits and opened anthers with remnants of pollen.

No interspecific hybrids between the members of clade B
were found, although they could be easily detected using the
hsp90i sequence. Lack of sequence variation within clade A
impedes detection of hybrids.

Phylogeny of sect. Vesicariae

We constructed phylogenetic trees for all four markers sepa-
rately, for concatenated nuclear (ITS2 + A5p90i) and plastid
(atpF-H + matk) sequences (Fig. 1), and for the combined set
of all four sequences (Fig. 2) (only for the specimens for which
all corresponding sequence markers were sequenced). Phylo-
genetic trees constructed using both nuclear (ITS2 + hsp90i)
and plastid (aspF-H + matk) sequence sets confirm the exis-
tence of the clade A (C. vesicata, C. vesicaria, C. saxatilis
subsp. laxa, and both subspecies of C. pamirica) group. On
the plastid tree, clade B (C. mollissima, C. jacutica, C. rotundata
and C. rostrata) is split into two parts, one of which also
includes C. rhynchophysa; however, we should note that this is
based on only a single substitution in the mazK gene.

Carex rhynchophysa differs considerably morphologically
from other representatives of the section Vesicariae: it has a
large number of staminate spikelets (3—7, in contrast to 1-4
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Figure 1. Phylogenetic trees of (a) Asp90i+1TS2 and (b) matK+ atpF-H concatenated sequences constructed using ME algorithm.
Numbers on branches indicate bootstrap support for ME/MP/ML algorithms/Bayesian posterior probabilities.
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Figure 2. Phylogenetic tree constructed using the combined set of all four sequences used in this study (bsp90i + ITS2 + matK+ atpF-H).

in other species of the section), and big pistillate spikelets
with high number of flowers (Egorova 1999). Based on these
differences, it is often considered to be the most primitive
representative of this section (Egorova 1999). Sequence data
conform with this special position of C. rhynchophysa within
the section: based on plastid sequences it falls into clade B,
but according to Asp90i sequences it forms a separate clade
that is close to clade A. This may suggest that C. rhynchophysa
might have arisen as the result of ancient intraspecific hybrid-
ization. According to Ford et al. (1993), C. rhynchophysa
may be a synonym of C. utriculata; however, this notion was
not supported by Egorova (1999). Unfortunately, there are
no sequences of this species in GenBank.

Clade A includes C. vesicaria, C. vesicata, C. saxatilis
subsp. /axa, and two subspecies of C. pamirica. The plastid

sequences of the members of this clade are identical; and
hsp90i sequences found only minor differences among them.
Carex saxatilis subsp. saxatilis matK and aspF-H sequences
from GenBank also fall in this group. According to allozyme
studies by Ford et al. (1993), C. vesicaria and C. saxatilis
subsp. saxatilis fall in a group separate from C. wutriculata,
C. membranaceae, C. rostrata and C. rotundara, although C.
saxatilis belongs to the short-beaked group, and C. vesicaria
to the long-beaked group.

Clade B includes C. rostrata, C. mollissima, C. jacutica
and C. rotundata. Carex rostrata, C. rotundata and C. mollissima
have characteristic indels that make them easily identifiable
and distinguish them from other species of the section. As
expected, C. membranacea matK and atpF-H sequences from
GenBank also fall in this group.



In summary, we identified two groups within the section
Vesicariae; this division is based on molecular data and cor-
relates with the nature of the transition of the utricle into the
beak, which is gradual in clade A and abrupt in clade B.
Egorova (1999) listed this utricle character among the most
constant diagnostic characters, in contrast to form, size, color,
and beak length. This division is in good accordance with
the results of allozyme studies by Ford et al. (1991, 1993).
These groups are also in accordance with the taxonomic
system of Kreczetowicz (1935), except for the position of
C. membranacea and C. mollissima. We conclude that phylo-
genetic analysis performed using nuclear and plastid sequence
markers allowed us to clarify relationships between the spe-
cies of the section Vesicariae and may become the basis for
recognition of subsectional taxa within this section.
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