Konon

### БОЛОТНИК Елизавета Витальевна

### МОРФО-БИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ВИДОВ РОДА PRUNELLA L. НА СРЕДНЕМ И ЮЖНОМ УРАЛЕ

03.02.01 – «Ботаника»

### АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата биологических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Ботаническом саду Уральского отделения Российской академии наук.

Научный руководитель – Неуймин Сергей Иосифович,

кандидат биологических наук, доцент

Официальные оппоненты: Абрамова Лариса Михайловна,

доктор биологических наук, профессор,

заслуженный деятель науки Республики Башкортостан,

Южно-Уральский ботанический сад - институт – обособленное структурное подразделение ФГБНУ Уфимского федерального исследовательского центра

РАН, главный научный сотрудник;

Карпова Евгения Алексеевна, кандидат биологических наук,

ФГБУН Центральный сибирский ботанический сад

СО РАН, старший научный сотрудник.

Ведущая организация: ФГАОУ ВО «Национальный исследовательский Томский государственный университет».

Защита диссертации состоится 20 ноября 2018 г. в 13.00 часов на заседании диссертационного совета Д 003.058.01 при ФГБУН Центральном сибирском ботаническом саде СО РАН по адресу: 630090, г. Новосибирск, ул. Золотодолинская, 101.

Факс: (383) 330-19-86 E-mail: botgard@ngs.ru

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН Центрального сибирского ботанического сада СО РАН. Сайт в Интернете: http://www.csbg.nsc.ru

Автореферат разослан 20 сентября 2018 г.

Ученый секретарь диссертационного совета, доктор биологических наук Д— Храмова Елена Петровна

### ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

исследования. Расширение списка видов лекарственных растений, естественно произрастающих на территории РФ, является актуальной научной проблемой в фундаментальном и практическом аспекте (Куркин, 2004; Высочина, 2008; Маняхин и др., 2011; Алексеева, Канев, 2014). Во флоре Уральского региона имеется большое число видов, обладающих терапевтическим эффектом. Род Prunella L. принадлежит к семейству Lamiaceae Juss., представители которого обладают высокой биологической активностью. Prunella vulgaris L. – черноголовка широко применяется народной медицине обыкновенная В противовоспалительное, антигистаминное (Fang et al., 2005), противовирусное (Љkottovб et al., 2004), противогрибковое (Георгиевский, 1990) и антиоксидантное средство (Shin et al., 2001). Лекарственные свойства Prunella grandiflora (L.) Scholler – черноголовки крупноцветковой мало изучены, ее экстракт проявляет антифунгальные и антибактериальные свойства (Растительные ресурсы..., 2011). В литературе имеются, в основном, сведения о биологии, экологии и лекарственных свойствах P. vulgaris (Рысина, 1973; Winn, 1985, 1988; Абрамова, 1996; Закамская и др., 2004; Барсукова, Черемушкина, 2014; Мяделец и др., 2014), тогда как данные о морфологических и биохимических особенностях близкородственного P. grandiflora в естественных условиях Среднего и Южного Урала не обнаружены. Исследование особенностей реализации фенотипического потенциала популяций в различных условиях произрастания является важной задачей на пути понимания механизмов адаптации и устойчивости биологических объектов. Очевидно, что без знания особенностей экологии и внутривидовой дифференциации видов, в том числе зависимости накопления биологически активных веществ от экологической приуроченности, эффективное решение проблемы невозможно.

На Среднем Урале проходит северо-восточная граница ареала вида *P. grandiflora*, в отличие от широко распространенного на данной территории вида *P. vulgaris*. В этой связи принципиальное значение имеет характер воздействия экологических факторов на вариабельность признаков в центре ареала и на пределе распространения у близкородственных видов.

**Цель исследования:** оценка морфологических, биохимических особенностей и анализ изменчивости *P. vulgaris* и *P. grandiflora* в зависимости от экологических условий произрастания на Среднем и Южном Урале.

### Задачи исследования:

- 1. Выявить типичные местообитания и фитоценотическую приуроченность *P. vulgaris* и *P. grandiflora* на Среднем и Южном Урале, провести экологоценотический анализ сообществ с участием изучаемых видов.
- 2. Изучить изменчивость морфологических признаков *P. vulgaris* и *P. grandiflora* в различных типах сообществ.
- 3. Изучить специфику накопления фенольных соединений в различных органах исследуемых видов.
- 4. Провести оценку влияния условий произрастания на морфологические и биохимические параметры у *P. vulgaris* и *P. grandiflora*.
- 5. Создать опытные образцы мягких лекарственных форм с экстрактами *P. vulgaris* и *P. grandiflora* и изучить особенности их ранозаживляющей активности при термическом ожоге на животных.

**Научная новизна.** Впервые проведены исследования изменчивости *P. vulgaris* и *P. grandiflora* в разных эколого-фитоценотических условиях Среднего и Южного Урала. Дополнены и уточнены сведения о морфологии видов, в первую очередь об изменчивости морфологических признаков растений. Получены новые данные по содержанию индивидуальных компонентов фенолкарбоновых кислот, впервые у *P. vulgaris* и *P. grandiflora* идентифицирована сиреневая кислота. Изучена динамика накопления розмариновой кислоты в надземной и подземной частях растений этих видов в различные фенофазы.

Практическая И теоретическая значимость работы. В результате проведенной работы описана амплитуда экологического пространства для двух видов рода Prunella на Среднем и Южном Урале. Показаны межвидовые и внутривидовые различия по морфологическим и биохимическим признакам в природных популяциях P. vulgaris и P. grandiflora в зависимости от экологических условий произрастания. Установлено, что растения P. vulgaris и P. grandiflora из природных и интродукционных уральских ценопопуляций являются перспективными источниками розмариновой кислоты. Показана целесообразность заготовки сырья этих растений на Среднем Урале. Разработаны композиции, содержащие в качестве активной субстанции 5 % сухого экстракта из растительного сырья P. vulgaris и P. grandiflora. Получен патент РФ на изобретение № 2552790 «Противоожоговая композиция».

Создана коллекция *P. vulgaris* и *P. grandiflora* на базе лаборатории интродукции травянистых растений Ботанического сада УрО РАН. Полученный материал используется для организации научного и учебного процесса на кафедре ботаники и фармакогнозии фармацевтического факультета УГМУ. Материалы могут быть использованы при преподавании студентам университетов курсов ботаники, экологии, фармакогнозии, фармакологии.

### Основные положения, выносимые на защиту:

- 1. Для *P. vulgaris* характерно наличие признакоспецифичности в изменчивости морфологических признаков, уровень их вариабельности не зависит от типа сообщества. В характере изменчивости абсолютных значений признаков вегетативной и генеративной сферы *P. vulgaris* и *P. grandiflora* обнаружена видоспецифичность на фоне изученных факторов среды.
- 2. Качественный состав фенолкарбоновых кислот у растений *P. vulgaris* и *P. grandiflora* в разных эколого-ценотических условиях не различается, меняется их количественное соотношение. Этанольный экстракт листьев *P. vulgaris* и *P. grandiflora* обладает выраженной противоспалительной активностью и эффективен при лечении термических ожогов.

Апробация работы. Основные результаты исследований доложены на XXIV Зимней молодежной научной школе «Перспективные направления физико-химической биологии и биотехнологии» (Москва, 2012); VIII Всероссийской научной конференции «Химия и технология растительных веществ» (Калининград, 2013); III (V) Всероссийской молодежной конференции с участием иностранных ученых (Новосибирск, 2014); Всероссийской научно-практической конференции молодых ученых «Ботанические сады: от фундаментальных проблем до практических задач» (Екатеринбург, 2014); III (XI) Международной Ботанической конференции молодых ученых (Санкт-Петербург, 2015); XXII Всероссийской молодежной научной конференции "Актуальные проблемы биологии и экологии" (Сыктывкар, 2015).

**Личный вклад автора.** В основу диссертации положены полевые исследования соискателя в течение 2011 – 2014 гг. на территории Среднего и Южного Урала.

Диссертантом проведен сбор материала, отбор образцов для морфологического и биохимического исследования. Автор лично выполнил морфометрические измерения растений и эколого-фитоценотический анализ сообществ, участвовал в проведении биохимического исследования. Автором проведена математико-статистическая обработка экспериментальных материалов, а также интерпретация и обобщение полученных результатов. Все основные результаты диссертации принадлежат автору.

**Публикации.** По теме диссертации опубликовано 16 научных работ, из них 3 статьи в изданиях, рекомендованных ВАК РФ, и 1 патент РФ на изобретение.

**Структура и объем работы.** Диссертация изложена на 190 страницах машинописного текста и состоит из введения, 6 глав, заключения, приложения, списка литературы, включающего 297 источников, в том числе 71 на иностранных языках. Текст диссертации иллюстрирован 19 таблицами и 38 рисунками.

Работа выполнена при финансовой поддержке Молодежного Гранта УрО РАН № 11-4-НП-344, № 14-4-ИП-63 и программы интеграционных и фундаментальных исследований: проект № 12-И-4-2023 "Анализ морфологической и биохимической изменчивости новых видов лекарственных растений в связи с проблемой изучения их адаптивного потенциала" (г. Сыктывкар), проект № 12-С-4-1028 "Адаптационные механизмы в природных и интродукционных популяциях растений Сибири и Урала" (г. Новосибирск).

# ГЛАВА 1. АСПЕКТЫ ИЗУЧЕНИЯ ИЗМЕНЧИВОСТИ РАСТЕНИЙ В ПОПУЛЯЦИЯХ И ХИМИЧЕСКОГО COCTABA PRUNELLA VULGARIS L. И PRUNELLA GRANDIFLORA L.

Глава содержит указания на работы отечественных и зарубежных авторов, посвященные изучению морфологической и биохимической изменчивости растений (Розанова, 1930; Синская, 1963; Мамаев, 1968; Мепадие, 1990; Каwecki, 2008; Храмова, Высочина, 2010). Подробно проанализированы работы по разным формам изменчивости (Филипченко, 1934; Майр, 1947; Мамаев, 1968; Скворцов, 1986) и рассматриваются вопросы биохимической изменчивости *P. vulgaris* и *P. grandiflora* в систематическом, медицинском и хозяйственных аспектах (Dmitruk et al., 1987; Растительные ресурсы..., 1991; Pharmacopoeia of..., 2000; Psotova et al., 2003; Cai et al., 2004; Єаhin et al., 2011 и др.). По литературным данным определена актуальность проблемы изучения изменчивости видов рода *Prunella* на основании комплексного подхода: морфологическом и биохимическом уровне.

### ГЛАВА 2. РАЙОН, ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

В ходе экспедиционных исследований в период с 2010 по 2014 года на территории Среднего и Южного Урала было изучено 13 ценопопуляций P. vulgaris и 7 ценопопуляций P. grandiflora (Рисунок 1). Исследования проводили на территории, расположенной между 54 и 57 ° с.ш., 57 и 63° в.д. в различных ботанико-географических районах.

Для эколого — ценотического анализа в каждом из местообитаний согласно общепринятой методике сбора и гербаризации материала производили отбор особей (Вакар, 1964). На месте сбора закладывали площадки размером 10х10 м<sup>2</sup> для описания местообитания (Миркин, Розенберг, 1978). Все выполненные описания сводили в общую таблицу для сортировки по типам сообществ. В результате выполнения

иерархического агломеративного кластерного анализа по методу связывания Уорда (Ward, 1963) на основе рассчитанных вторичных матриц построили дендрограмму с использованием коэффициента Сокала/Снита No 4 (Sokal, Sneath, 1963).



Экологические условия произрастания видов рода *Prunella* определяли с помощью шкал Цыганова (1983) на основе сводного списка видов фитоценозов. На профильных участках произрастания видов рода *Prunella* оценены следующие экологические факторы: влажность почвы (Hd), содержание в почве доступного азота (Nt), кислотность почвы (Rc), трофность почвы (Tr) и затененность местообитания (Lc). Оценка экологических факторов вычислялась в баллах по общепринятой методике (Зубкова и др., 2008; Широких, 2009).

Для морфологического анализа в каждой точке сбора проводили отбор растений *P. vulgaris* и *P. grandiflora* в фенофазе цветения. Собранные растения из вышеуказанных ценопопуляций гербаризировали. Всего было исследовано 685 растений *P. vulgaris* и 317 растений *P. grandiflora*, на которых изучали признаки вегетативной и генеративной сферы. С каждого растения отбирали 2 листа, расположенные супротивно в средней части стебля. Таким образом, было изучено 2000 листьев: 1370 листьев *P. vulgaris* и 634 листа *P. grandiflora*.

На каждом побеге измеряли его общую высоту (H, см), диаметр стебля (D\_st, см), общее число узлов (N\_uzlov), общее число листьев на побеге (N\_l), а также длину (Dl\_socv,см) и ширину (Sh\_socv, см) соцветия. Для характеристики формы соцветия использовали отношение длины к ширине (Dl\_socv/Sh\_socv). Листья *P. vulgaris* и *P. grandiflora* сканировали, после чего изображения импортировали в программу Simagis (SiamsMesoPlant), с помощью которой измеряли следующие параметры: общую площадь листа (S, кв. см), периметр листа (P, см), длину и наибольшую ширину листа (Dl\_L, Sh\_L, см), фактор формы (Ff), среднюю высоту зубчиков (Sr\_h\_zub, см), среднюю ширину основания зубчиков (Sr\_sh\_zub, см), суммарную длину жилок (Summa\_G, см), общую длину жилок в расчете на 1 кв. см (Dl\_G). Измерения параметров ширины черешка (Sh\_ch, мм) и ширины основной жилки (Sh\_G, мм) проводили в программе Corel Draw X3. Вычисляли отношение длины

листа к ширине листа (DL\_L/Sh\_L), а также отношение ширины листа к ширине черешка (Sh\_L/Sh\_ch), умноженное на десять для удобства визуализации данных.

Для анализа изменчивости морфологических признаков был использован коэффициент вариации, который оценивали по шкале уровней изменчивости, предложенной С.А. Мамаевым (1985).

Качественный состав фенолкарбоновых кислот *P. vulgaris* и *P. grandiflora* определяли в листьях из разных эколого-ценотических условий, собранных во время массового цветения в 2011 г. Сравнительный анализ содержания суммы фенольных соединений и розмариновой кислоты у *P. vulgaris* и *P. grandiflora* проводили в листьях, собранных в природе и в условиях интродукции в фазу цветения в 2011 г. Изучение динамики накопления розмариновой кислоты в подземных и надземных органах *P. vulgaris* и *P. grandiflora* проводили в естественных условиях произрастания в различные фенофазы в 2012 г. Содержание розмариновой кислоты в листьях, собранных во всех исследуемых ценопопуляциях *P. vulgaris* и *P. grandiflora*, определяли в период с 2011 по 2014 год. Листья собирали со среднего яруса растений. Анализировали среднюю пробу из каждой ценопопуляции, состоящую из 30-40 растений в естественных условиях произрастания, 15-20 – в условиях интродукции. Образцы в условиях интродукции собирали на второй год жизни.

Сушку растений осуществляли в хорошо проветриваемых помещениях. Высушенное сырье измельчали до размера частиц, проходящих сквозь сито с отверстиями 1 мм. Анализ проб проводили в трех биологических повторностях. Навеску 0.1 г экстрагировали 10 мл 96% метанола в круглодонной колбе при нагревании с обратным холодильником на водяной бане в течение 1 часа. После охлаждения экстракт фильтровали. Содержание фенольных соединений в экстрактах растений определяли с помощью реактива Фолина-Чокальтеу (Tsao et al., 2005). Оптическую плотность всех образцов измеряли при 765 нм на фотоэлектрическом фотометре КФК-3. Результаты выражали как эквивалент галловой кислоты в граммах на 100 грамм сухого веса. При определении фенолкарбоновых кислот использовали хроматографическую систему производства «Knauer» (Германия): насос Smartline 1000, детектор UV-VIS Smartline 2500, инжектор 20 мкл, колонка Microsorb<sup>TM</sup> – 100 AC 18, 7 мкм (250Ч4 мм) (Varian, США). Использовали растворители марки «чда» производства ОАО «Реактив», Россия. Для ВЭЖХ применяли стандарты кофейной, сиреневой, *п*-кумаровой, феруловой и розмариновой кислот «Sigma-Aldrich» (Германия).

Условия разделения фенолкарбоновых кислот: элюент состоял из воды дистилированной — ацетонитрила — фосфорной кислоты (85:15:0,05), скорость элюирования 0,7 мл/мин. Детектировали при 256 нм.

Статистическую обработку результатов исследований проводили с помощью программы Microsoft Excel 2003 и статистических методов в стандартном пакете Statistica 6.0.

## ГЛАВА 3. ЭКОЛОГО-ЦЕНОТИЧЕСКАЯ ХАРАКТЕРИСТИКА СООБЩЕСТВ С УЧАСТИЕМ ВИДОВ PRUNELLA VULGARIS L. И PRUNELLA GRANDIFLORA L.

Исследованы эколого-ценотические характеристики видов рода *Prunella*, произрастающих на Среднем и Южном Урале. Проанализировано 7 фитоценозов с *P. grandiflora* и 13 фитоценозов с *P. vulgaris*. Кластерный анализ показал разделение

сообществ с участием *P. grandiflora* на три типа, а с участием *P. vulgaris* - на четыре. *P. grandiflora* встречается на лесных лугах с единичными деревьями *Betula pendula*, а также в сомкнутых березовых (*Betula pendula*) лесах. Наиболее характерными для произрастания *P. grandiflora* на Среднем и Южном Урале являются разреженные (*Betula pendula*) березовые леса, граничащие с луговыми опушечными сообществами. Наибольшее проективное покрытие *P. grandiflora* отмечено в луговых сообществах, наименьшее – в березовых лесах.

*P. vulgaris* встречается в березовых (*Betula pubescens*) лесах, а также на лугах, которые характеризуются включением единичных деревьев *Betula pendula*, *Betula pubescens*, *Sorbus aucuparia* и *Populus tremula*. Обилие вида в данных сообществах составляет 7-8%. Высокое обилие *P. vulgaris* отмечено в сосновых и елово-сосновых (*Pinus sylvestris*) лесах (7-12 %). Одно из описанных местообитаний *P. vulgaris* – елово-лиственничная лесопосадка с примесью *Sorbus aucuparia* и *Padus avium*. Наибольшее проективное покрытие *P. vulgaris* отмечено в сосновых и еловососновых (*Pinus sylvestris*) лесах, наименьшее – в елово-лиственничной лесопосадке.

С использованием шкал Д.Н. Цыганова (1983) мы определили положение *P. vulgaris*, охарактеризованного серией описаний (Рисунок 2a).

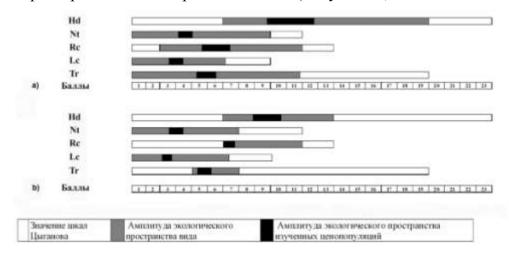



Рисунок 2 – Характеристика экологической амплитуды *P. vulgaris* (a) и *P. grandiflora* (b) по шкалам Д.Н. Цыганова (1983)

Примечание – расшифровка аббревиатуры приведена в главе 2

В исследуемых фитоценозах вид приурочен к местам полуоткрытым или светлолесным (от 2,6 до 4,3) с увлажнением от сублесолугового до влажно-лесолугового (от 9,9 до 12,8), по шкале трофности произрастает на небогатых или довольно богатых почвах (от 5,4 до 6,6), очень бедных и бедных азотом (от 4,2 до 5,1), имеющих кислую и слабокислую среду (рН от 5,8 до 6,7)

В исследованных районах *P. grandiflora* (Рисунок 2b) приурочена к местам полуоткрытых пространств и светлых лесов (от 2,9 до 3,6 баллов) с увлажнением от влажно-степного до сухолесолугового (от 9,0 до 10,8 баллов), произрастает на почвах очень бедных и бедных азотом (от 3,7 до 4,5 баллов), небогатых (от 5,4 до 6,3 баллов), имеющих кислую и слабокислую среду (баллы от 6,0 до 6,7).

Полученные нами данные для видов *P. vulgaris* и *P. grandiflora* по экологическим шкалам позволяют сравнить с ранее установленными Д.Н. Цыгановым (1983) для Европейской части России и Урала (Рисунок 2). Изученные виды в пределах Среднего и Южного Урала характеризуются сравнительно узким

диапазоном экологического пространства по рассмотренным экологическим шкалам. Практически по всем факторам амплитуда экологического пространства исследуемых видов рода *Prunella* на охваченной территории занимает срединную часть в амплитуде экологического пространства вида и не выходит за пределы диапазона экологического ареала видов по шкалам Д.Н. Цыганова (1983). Исключение составляет фактор кислотности почвы в сообществах с участием *P. grandiflora*. На северо-восточной границе ареала *P. grandiflora* может произрастать в более кислых почвах (6-6,7 баллов), чем в ранее указанных по шкалам Д.Н. Цыганова (7-11). Таким образом, изучение на пределе распространения позволило уточнить сведения по экологическому ареалу вида.

По совокупности почвенных условий вид P. vulgaris наиболее полно реализует свои возможности по отношению к фактору увлажнения почв и менее — по богатству азота в почве. P. grandiflora по совокупности почвенных условий наиболее полно реализует свои возможности по отношению к фактору увлажнения почв и менее — по кислотности.

P. vulgaris на Среднем и Южном Урале произрастает в местообитаниях от хорошо затененных до слабо освещенных, на почвах с достаточным увлажнением и содержанием азота. Тем временем, как P. grandiflora предпочитает более сухие и освещенные местообитания, с менее богатыми почвами и пониженным содержанием азота.

### ГЛАВА 4. МОРФОЛОГИЧЕСКИЕ ОСОБЕННОСТИ ВИДОВ PRUNELLA VULGARIS L. И PRUNELLA GRANDIFLORA L. HA СРЕДНЕМ И ЮЖНОМ УРАЛЕ

### 4.1. Межвидовые морфологические различия

Надземная часть генеративных особей P. vulgaris достигает высоты от 8,80 до 44,20 см. Вегетативные побеги несут от 3 до 13 листьев, узлов отмечено от 3 до 7, диаметр стебля В основании составляет 0,07-0,29 см. Листорасположение супротивное, средние и нижние листья черешковые, верхние - короткочерешковые или сидячие. Ширина черешка среднего листа составляет 0,36-1,25 мм. Листья простые, светло-зеленые: длина листовых пластинок среднего листа варьирует от 1,46 до 5,48 см, а ширина от 0,74 до 3,18 см. Среднее значение площади листа равно  $4,47\pm0,13$  кв. см, периметра –  $10,79\pm0,15$  см. Жилкование перистопетлевидное, ширина главной жилки в основании составляет от 0,20 до 0,90 мм. Показатели зубчиков листа: высота зубчиков меняется от 0,02 до 0,18 см, ширина основания зубчика – 0,16 до 0,68 см. Верхушечное колосовидное соцветие P. vulgaris может иметь как квадратную, так и вытянутую форму. Длина соцветия составляет от 0,6 до 4,30 см, ширина – от 0,60 до 2,30 см.

Надземная часть генеративных особей P. grandiflora достигает высоты от 16 до 57,5 см. Вегетативные побеги несут от 5 до 14 листьев, отмечено узлов 3-8, диаметр стебля в основании составляет от 0,1 до 0,28 см. Ширина черешка среднего листа составляет 0,60-2,51 мм. Листья простые, от светло-зеленых до темно-зеленых: длина листовых пластинок среднего листа варьирует от 1,87 до 8,83 см, а ширина - 0,61 до 3,97см. Среднее значение площади листа равно 7,91 $\pm$ 0,25 кв. см, периметра – 15,52 $\pm$ 0,27 см. Жилкование перистопетлевидное, ширина главной жилки в ее основании составляет от 0,40 до 1,28 мм. Показатели зубчиков: высота зубчиков

меняется от  $0.01\,$  до  $0.12\,$  см, ширина основания зубчика  $0.20\,$  до  $0.75\,$  см. Соцветие  $P.\ grandiflora$  — головчатый колос, длина которого составляет от  $0.90\,$  до  $4.80\,$  см, ширина — от  $0.60\,$  до  $2.30\,$  см.

Итак, по сравнению с P. vulgaris растения P. grandiflora имеют более высокие побеги, более крупные листья и, соответственно, большую суммарную длину жилок на листе. У P. grandiflora также можно отметить более крупное и квадратное соцветие. Вид P. grandiflora является наиболее декоративным по количественным показателям побега и листа.

### 4.2. Закономерности изменчивости морфологических признаков листовой пластинки

Анализ изменчивости признаков листа *P. vulgaris* показал, что большинство признаков распределяется на трех уровнях изменчивости: низком, среднем и высоком (Таблица 1). Минимальные значения коэффициента вариации выявлены для периметра, отношения длины к ширине листа. Средние значения отмечены для длины и ширины листа, фактора формы, средней ширины основания зубчика, отношения ширины листа к ширине черешка.

Таблица 1 – Экологическая изменчивость признаков листа, побега и соцветия *P. vulgaris* 

| Тип сообщества/ | Низкая       | Средняя                  | Высокая                    |  |
|-----------------|--------------|--------------------------|----------------------------|--|
| изменчивость    | 8-12         | 13-20                    | 21-40                      |  |
| Березовые леса  | P, DL _L /   | Ff, DL_L, Sh_L,          | S, Sr_h_zub, Summa_G,      |  |
|                 | Sh_L,N_uzlov | Sr_sh_zub, Dl_G,         | Sh_ch, Sh_G, H, D_st,      |  |
|                 |              | Sh_L/Sh_ch, N_l, Sh_socv | Dl_socv, Dl_socv / Sh_socv |  |
| Луговые         | P            | Ff, DL_L, Sh_L,          | S, Sr_h_zub, Summa_G,      |  |
| сообщества      |              | Sr_sh_zub, DL _L / Sh_L, | Dl_G, Sh_ch, Sh_G, H,      |  |
|                 |              | Sh_L/Sh_ch, N_uzlov,     | Dl_socv, Dl_socv/Sh_socv   |  |
|                 |              | N_l, D_st, Sh_socv       |                            |  |
| Сосновые леса   |              | P, Ff, DL_L, Sh_L,       | S, Sr_h_zub, Summa_G,      |  |
|                 |              | Sr_sh_zub, DL _L/Sh_L,   | Dl_G, Sh_ch, Sh_G, H,      |  |
|                 |              | Sh_L/Sh_ch, N_uzlov, N_l | Dl_socv, D_st,             |  |
|                 |              |                          | Dl_socv/Sh_socv, Sh_socv   |  |

Примечание – расшифровка аббревиатуры приведена в главе 2

Наиболее изменчивыми во всех изученных типах сообществ являются площадь листа, ширина черешка, средняя высота зубчика и показатели жилок (суммарная длина жилок на листе, ширина основной жилки и длина жилок на 1 кв. см). В разных условиях произрастания морфологические признаки варьируют сходным образом: независимо от типа сообщества произрастания *P. vulgaris* 10 признаков из 13 имеют одинаковый уровень изменчивости. По средним значениям коэффициентов вариации *P. vulgaris* наиболее изменчивыми являются листья растений из сосновых лесов, наименее – из луговых сообществ.

Анализ средних значений коэффициентов вариации признаков листа *P. grandiflora* показал, что изученные морфологические признаки распределяются на четырех уровнях изменчивости: низком, среднем, высоком и очень высоком (Таблица 2). Единичные признаки относятся к категории с низким (отношение длины

к ширине листа) и очень высоким (площадь) уровнем изменчивости. У *P. grandiflora* в сомкнутых (9 из 13 признаков) и в разреженных (10 из 13 признаков) березовых лесах коэффициент вариации по большинству признаков листа соответствует среднему уровню изменчивости, в луговых сообществах (9 из 13 признаков) — высокому уровню изменчивости.

Таблица 2— Экологическая изменчивость признаков листа, побега и соцветия *P. grandiflora* 

| Тип            | Низкая           | Средняя                  | Высокая           | Очень   |
|----------------|------------------|--------------------------|-------------------|---------|
| сообщества/    | 8-12             | 13-20                    | 21-40             | высокая |
| изменчивость   |                  |                          |                   | >40     |
| Сомкнутые      | DL_L/Sh_L        | P, Ff, DL_L, Sh_L,       | S, Sr_h_zub,      |         |
| березовые леса |                  | Sr_sh_zub, Dl_G, Sh_ch,  | Summa_G, H,       |         |
|                |                  | Sh_G, Sh_L/Sh_ch,        | Dl_socv,          |         |
|                |                  | N_uzlov, N_l, D_st,      | Dl_socv/Sh_socv   |         |
|                |                  | Sh_socv                  |                   |         |
| Луговые        | N_uzlov, D_st,   | Sr_sh_zub, Sh_G,         | P, Ff, DL_L,Sh_L, | S       |
| сообщества     | Dl_socv,Sh_socv, | DL _L/Sh_L, H, N_l       | Sr_h_zub,         |         |
|                | Dl_socv/Sh_socv  |                          | Summa_G, Dl_G,    |         |
|                |                  |                          | Sh_ch,            |         |
|                |                  |                          | Sh_L/Sh_ch        |         |
| Разреженные    | N_uzlov, N_l     | Ff, Sr_sh_zub, Sh_ch,    | S, Sr_h_zub,      |         |
| березовые леса |                  | Sh_G, P,Sh_L, DL _L,     | Summa_G           |         |
|                |                  | DL_L/Sh_L,Dl_G,H,D_st,   |                   |         |
|                |                  | Dl_socv,Dl_socv/Sh_socv, |                   |         |
|                |                  | Sh_socv, Sh_L/Sh_ch      |                   |         |

Примечание – расшифровка аббревиатуры приведена в главе 2

Итак, на границе распространения вида в луговых сообществах *P. grandiflora* проявляет средний, высокий и очень высокий уровень изменчивости признаков листа, в отличие от растений из березовых лесов. Для них отмечен низкий, средний и высокий уровень изменчивости, в том числе один низковариабельный признак – отношение длины листа к его ширине.

В разных типах сообществ у видов рода *Prunella* параметры листьев отличаются по среднему значению. Наиболее развитые вегетативные органы имеют растения *P. vulgaris* и *P. grandiflora* в лесных сообществах. Листовые пластинки у них крупные, а также выше величины суммарной длины жилок на листе, фактор формы, отношения ширины листа к ширине черешка и средней ширины основания зубчика по сравнению с растениями, взятыми из других местообитаний. Обнаружена тенденция к сокращению размерных признаков листа в луговых сообществах произрастания *Prunella*, справедливая для обоих видов. У *P. grandiflora* в составе луговых сообществ средние значения площади листа, периметра листа, длины и ширины листа в два раза ниже, чем в березовых лесах.

В результате проведенного дискриминантного анализа показана дифференциация видов P. vulgaris и P. grandiflora по совокупности морфологических признаков листа в разных типах сообществ. В разных условиях произрастания морфологические признаки листа у вида P. vulgaris варьируют сходным образом, в отличие от P. grandiflora, у которой отмечена низкая признакоспецифичность по

уровням изменчивости. Для *P. vulgaris* и *P. grandiflora* найдены консервативные признаки, которые могут быть использованы в качестве маркерных для задач диагностики изученных видов в вегетативном состоянии, а также сравнения географически удаленных ценопопуляций: периметр листа и отношение длины листа к его ширине.

## 4.3. Закономерности изменчивости морфологических признаков побега и соцветия

Аналогично анализу варьирования морфологических признаков листа у видов рода *Prunella* была произведена оценка характера изменчивости побега и соцветия по 7 признакам. Анализ средних значений коэффициентов вариации признаков побега и соцветия *P. vulgaris* показал, что они распределяются на трех уровнях изменчивости: низком, среднем и высоком (Таблица 1). Минимальные значения коэффициента вариации выявлены для признака количество узлов. Значения коэффициента вариации со средним уровнем изменчивости отмечены для признака количество листьев и ширина соцветия. Наиболее изменчивыми во всех изученных типах сообществ являются высота растения, длина соцветия и отношение длины соцветия к ширине. Независимо от типа сообщества произрастания *P. vulgaris* 4 признака из 7 имеют одинаковый уровень изменчивости: количество листьев, высота растения, длина соцветия, отношение длины к ширине соцветия. По большинству средних значений коэффициента вариации в ценопопуляции максимальная вариативность побега и соцветия *P. vulgaris* отмечена в сосновых лесах, минимальная – в луговых сообществах.

У *P.grandiflora* в луговых сообществах по большинству признаков побега и соцветия коэффициенты вариации соответствуют низкому уровню изменчивости, в сомкнутых березовых лесах — среднему и высокому уровню изменчивости, в разреженных березовых лесах — низкому и среднему (Таблица 2). У *P. grandiflora* в луговых сообществах коэффициент вариации по большинству признаков побега и соцветия (5 из 7 признаков) соответствует низкому уровню изменчивости, в березовых лесах — среднему уровню изменчивости. В луговых сообществах *P. grandiflora* проявляет низкий уровень изменчивости признаков побега и соцветия, в отличие от растений из березовых лесов. Для них отмечен низкий, средний и высокий уровень изменчивости признаков. Средние значения коэффициента вариации по признакам побега и соцветия *P. grandiflora* в березовых лесах произрастания в 1,5 – 2 раза выше, чем в луговых сообществах.

В разных типах сообществ у видов рода *Prunella* рассмотренные признаки, как правило, различаются по абсолютным средним значениям. В ходе исследований было установлено, что у *P. vulgaris* максимальная высота побега, длина и ширина соцветия – в березовых лесах. Если сравнивать ценопопуляции *P. vulgaris* из сосновых лесов и в луговых сообществах по данным показателям, то средние значения выше у растений в сосновых лесах. Вместе с тем, у *P. vulgaris* не зависят от типа сообщества счетные признаки число узлов и число листьев, а также индексовый показатель отношение длины соцветия к ширине и мерный признак диаметр стебля.

Аналогично *P. vulgaris, у P. grandiflora* счетные признаки побега и соцветия также слабо зависят от типа сообщества. В луговых сообществах растения *P. grandiflora* при меньшей средней высоте побега имеют более высокое среднее значение диаметра стебля. Для них характерны более длинные и широкие соцветия по

сравнению с особями *P. grandiflora* в березовых лесах. Все линейные показатели параметров соцветия и побега у *P. grandiflora* из разреженных березовых лесов демонстрируют более низкие значения по сравнению с растениями из других сообществ.

Для выявления взаимосвязи морфологических признаков с экологическими факторами проведены расчеты методом главных компонент и регрессионный анализ данных. Результаты позволили выявить экологические факторы, определяющие размерность метрических признаков у *P. vulgaris* и *P.grandiflora*. Для *P. vulgaris* показана связь морфометрических параметров с факторами освещенности, влажности и уровнем трофности почвы. Чем выше влажность и ниже уровень трофности почвы, больше затененность, тем выше следующие признаки: площадь, периметр, длина и ширина листа, отношение длины листа к его ширине, фактор формы, суммарная длина жилок на листе. Для *P. grandiflora* показано влияние факторов кислотности почвы и доступности азота на морфометрические параметры. Чем ниже кислотность почв и меньше в них содержание азота, тем выше следующие морфологические признаки: площадь, периметр, фактор формы листа, длина и ширина листа, отношение длины листа к его ширине, суммарная длина жилок на листе, средняя высота зубчика, средняя ширина основания зубчика, длина соцветия.

Таким образом, изучение изменчивости *P. vulgaris* на территории Среднего и Южного Урала показало, что в разных условиях произрастания морфологические признаки у вида *P. vulgaris* варьируют сходным образом. В характере изменчивости отмечена признакоспецифичность — независимо от типа сообщества 14 из 20 морфологических признаков листа, соцветия и побега имеют одинаковый уровень изменчивости. Большинство морфологических признаков *P. grandiflora* варьирует в зависимости от типа сообщества.

### ГЛАВА 5. COCTAB И СОДЕРЖАНИЕ ФЕНОЛЬНЫХ СОЕДИНЕНИЙ PRUNELLA VULGARIS L. И PRUNELLA GRANDIFLORA L.

### 5.1. Состав и характер распределения фенолкарбоновых кислот в листьях

Качественный состав фенольных соединений в листьях растений *P. vulgaris* и *P. grandiflora* исследовали методом обращено-фазовой ВЭЖХ. Растения собраны на территории Среднего Урала в 2011 году в период цветения в разных эколого - ценотических условиях. При хроматографировании экстрактов листьев *P. vulgaris* и *P. grandiflora* установлено 5 пиков, соответствующих фенолкарбоновым кислотам, которые идентифицированы на основании сравнения значений времени удерживания (tR) веществ-свидетелей на хроматограмме: кофейная, сиреневая, *п*-кумаровая, феруловая и розмариновая (Рисунок 3).

По качественному составу фенольных соединений у двух видов различий не обнаружено. Сиреневая кислота в листьях *P. vulgaris*, *P. grandiflora* была идентифицирована впервые.

Для анализа межпопуляционных различий были взяты P. grandiflora и P. vulgaris в луговых и лесных сообществах. Содержание фенолкарбоновых кислот в листьях растений P. grandiflora в луговом сообществе составляет 66,4 мг/г, в березовом лесу -46,8 мг/г; у P. vulgaris - 35,6 мг/г и 21,9 мг/г соответственно. Таким образом, сравнительный анализ показал, что листья растений P. grandiflora и P. vulgaris из луговых сообществ содержали фенолкарбоновых кислот больше, чем из лесных

сообществ. Диапазон содержания феруловой кислоты у P. grandiflora шире и значения выше (от 1,62 до 8,26 мг/г), чем у P. vulgaris (от 0,41 до 0,44 мг/г). Сиреневой кислоты накапливается у P. grandiflora 1,21-6,59 мг/г, а у P. vulgaris — 2,33-2,81 мг/г, кофейной кислоты — 1,13-1,60 мг/г и 0,40-0,64 мг/г, соответственно. Диапазон содержания n-кумаровой кислоты составляет у P. grandiflora от 0,82 до 3,82 мг/г, у P. vulgaris — от 0,60 до 0,83 мг/г. Как показали результаты исследований в листьях P. grandiflora содержание большинства фенолкарбоновых кислот было выше, чем у P. vulgaris.

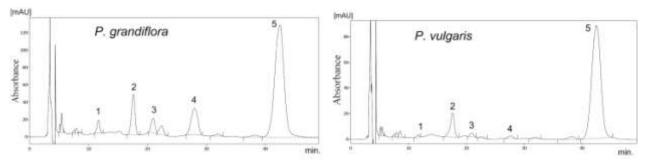



Рисунок 3 — Хроматограмма метанольного экстракта листьев *P. grandiflora, P. vulgaris* По оси абсцисс — время удерживания, tR, мин; по оси ординат — оптическая плотность, е.о.п.; 1 —кофейная, 2 — сиреневая, 3 — п-кумаровая, 4 — феруловая, 5 — розмариновая к-ты

Во всех изученных сообществах у обоих видов доминирует розмариновая кислота: у P. grandiflora она составляет 70-89 % от суммы фенолкарбоновых кислот, у P. vulgaris - 82-88 %. В листьях P. grandiflora отмечено до 12,5 % от суммы феруловой кислоты, до 9,9 % — сиреневой кислоты, до 5,8 % — n-кумаровой кислоты, до 2,8 % — кофейной кислоты. В P. vulgaris отмечено до 10,7 % сиреневой кислоты от суммы кислот, остальные исследуемые вещества не превышали 3,8 %.

Характер распределения компонентов в процентном соотношении от суммы фенолкарбоновых кислот различается не только по видам *Prunella*, но и по местообитаниям. У *P. grandiflora* независимо от условий произрастания доминируют розмариновая и феруловая кислоты. Процентное соотношение кофейной, пкумаровой и сиреневой кислот меняется у *P. grandiflora* в разных экологоценотических условиях. У *P. vulgaris* доминируют сиреневая и розмариновая кислоты, процентное соотношение остальных кислот меняется в зависимости от биогеоценоза.

## 5.2. Сравнительный анализ содержания фенольных соединений и розмариновой кислоты в листьях

Сравнительное исследование содержания розмариновой кислоты проводили в листьях P. vulgaris (13 местообитаний) и P. grandiflora (7 местообитаний) в период 2011 - 2014 гг. В 2011 году у P. vulgaris и P. grandiflora, произрастающих в Турции, отмечены сходные диапазоны значений содержания розмариновой кислоты: от 1,19 до 38,28 мг/г – в P. vulgaris, от 0,70 до 36,45 мг/г – в P. grandiflora (Sahin et al., 2011). Согласно полученным нами данным, в 2011 году содержание розмариновой кислоты в P. grandiflora на северной границе ее ареала выше, чем в южных местообитаниях: от 41,77 до 52,39 мг/г. Диапазон содержания розмариновой кислоты в листьях P. grandiflora выше, чем у P. vulgaris (от 17,88 до 31,17 мг/г).

Содержание розмариновой кислоты определяли в ценопопуляциях *P. grandiflora* (Александровские сопки, Мокрая и Свердловское) и *P. vulgaris* (Нижний Иргинск) в 2011 – 2012 гг. В 2012 г. диапазон содержания розмариновой кислоты в листьях *P. grandiflora* также выше, чем у *P. vulgaris*: у *P. grandiflora* составляет от 27,20 до 64,1 мг/г, а у *P. vulgaris* – от 30,37 до 33,72 мг/г. У *P. grandiflora* в Александровских сопках значения содержания розмариновой кислоты в 2012 году выше (64,1 мг/г), чем в 2011 году (52,39 мг/г). В местообитаниях Мокрая и Свердловское содержание розмариновой кислоты остается таким же высоким. У *P. vulgaris* в точке Нижний Иргинск накапливается исследуемого вещества в два раза больше (30,37 мг/г) в 2012 г., чем в 2011 году (17,88 мг/г). Таким образом, характер накопления розмариновой кислоты в листьях *P. grandiflora* и *P. vulgaris* по двум годам аналогичен, что, вероятно, связано с более теплым и влажным вегетационным сезоном в 2012 году.

В 2013 году у *P. grandiflora* была обследована одна ценопопуляция из пос. Еныпаево, для которой получили значение содержание розмариновой кислоты: 33,06 мг/г. Для *P. vulgaris* диапазон накопления розмариновой кислоты составил от 7,3 до 22,68 мг/г.

Алексеева Л.И и Канев В.А. изучали содержание розмариновой кислоты в различных органах P. vulgaris из Республики Коми (Алексеева, Канев, 2014), то есть из региона, расположенного севернее мест произрастания изученных нами растений. Отмечено более низкое содержание розмариновой кислоты в растениях P. vulgaris (от 0,99 до 8,42 мг/г) по сравнению с нашими данными (от 9, 42 до 26,97 мг/г).

При изучении содержания фенольных соединений в растениях P. grandiflora и P. vulgaris в естественных условиях произрастания и в условиях интродукции было показано, что у P. grandiflora накапливается от 61,90 до 80,00 мг/г, у P. vulgaris — от 34,56 до 75,19 мг/г. У растений P. grandiflora, интродуцированных в Ботаническом саду УрО РАН, содержание фенольных соединений выше (76,2 мг/г), чем в растениях, собранных в естественных условиях произрастания (71,5 мг/г, Александровские сопки). У интродуцированных растений P. vulgaris (Нижний Иргинск) этот показатель почти в три раза выше, чем у растений из природы.

Содержание розмариновой кислоты в *P. grandiflora* (41,77- 53,00 мг/г) выше, чем в *P. vulgaris* (17,88 - 48,18 мг/г). В условиях интродукции содержание розмариновой кислоты у *P. grandiflora* остается на том же уровне - 53,0 мг/г, а у *P. vulgaris* – увеличивается в 2,5 раза.

В *P. grandiflora* установлено более высокое содержание розмариновой кислоты, чем у *P. vulgaris* на Среднем и Южном Урале. По нашим результатам в условиях интродукции *P. grandiflora* и *P. vulgaris* содержание розмариновой кислоты и фенольных соединений остается таким же высоким, как в естественных условиях произрастания или увеличивается. Виды *P. grandiflora* и *P. vulgaris* перспективны в качестве возможной замены некоторых официнальных видов, менее адаптированных к климатическим условиям Среднего Урала.

### 5.3. Динамика накопления розмариновой кислоты в органах Prunella vulgaris L. и Prunella grandiflora L.

Исследование динамики накопления розмариновой кислоты проводили в различных органах *P. vulgaris* и *P. grandiflora* в естественных условиях произрастания на Среднем и Южном Урале в 2012 году. Для *P. grandiflora* отмечено максимальное накопление розмариновой кислоты в листьях и корнях в период цветения (Рисунок 4).

Динамика содержания розмариновой кислоты в стеблях P. grandiflora носит более консервативный характер, то есть мало изменяется в период вегетации, цветения и плодоношения. В репродуктивных органах максимальная концентрация розмариновой кислоты отмечена в соцветиях в фазу цветения, в фазу плодоношения ее содержание значительно снижается. В листьях содержание розмариновой кислоты повышается от вегетации к цветению, в фазу плодоношения количество ее снижается почти до прежнего уровня. Установлено, что наиболее предпочтительной для сбора является фаза цветения, так как накапливается максимальное розмариновой кислоты во всей надземной части растения.

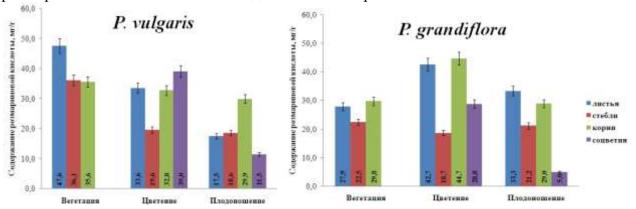



Рисунок 4 — Содержание розмариновой кислоты в органах P. grandiflora, P. vulgaris в различные фенофазы (мг/г)

Как показали результаты исследований, для P. vulgaris характерно максимальное накопление розмариновой в листьях в период вегетации и в соцветиях в фазе цветения (Рисунок 4). В стеблях максимальная концентрация розмариновой кислоты отмечена в фазу вегетации. В фазу цветения в стеблях содержание розмариновой кислоты снижается почти в два раза. Во время цветения и плодоношения концентрации ее в стеблях одинаковы. Для листьев и стеблей характерно снижение к плодоношению. концентрации OT вегетации В соцветиях максимальные концентрации розмариновой кислоты отмечены в цветение, в фазу плодоношения ее содержание значительно снижается. Высокие концентрации розмариновой кислоты обнаружены в фазу вегетации: в листьях, стеблях и корнях P. vulgaris накапливается максимальные концентрации розмариновой кислоты за сезон. Для получения розмариновой кислоты у *P. vulgaris* также можно использовать фазу цветения.

Таким образом, для заготовки растений *P. vulgaris* с высоким содержанием розмариновой кислоты можно рекомендовать сбор в фазу вегетации и цветения, а у *P. grandiflora* – в фазу цветения. Рекомендуем использовать надземную и подземную часть растений *P. vulgaris*, *P. grandiflora*, так как в корнях отмечена высокая концентрация розмариновой кислоты.

### ГЛАВА 6. ВОЗМОЖНОСТИ ПРАКТИЧЕСКОГО ИСПОЛЬЗОВАНИЯ PRUNELLA VULGARIS L. И PRUNELLA GRANDIFLORA L.

Автором предложены композиции для местного применения, обладающие противовоспалительным, ранозаживляющим и противоожоговым действиями при отсутствии острой и хронической токсичности, местного раздражающего действия,

сенсибилизирующих свойств на основе вазелин-ланолина, или карбопола, или гидрогеля, содержащие в качестве активной субстанции 5 % сухого экстракта из растительного сырья черноголовки крупноцветковой и черноголовки обыкновенной с содержанием 60% розмариновой кислоты. Отмечена безопасность применения композиций и более активное заживление термических ожогов в опытных группах животных в среднем на 3-7 суток по отношению к контролю.

### выводы

- 1. На территории Среднего и Южного Урала *P. vulgaris* встречается в сосновых, елово-сосновых, березовых лесах, на лугах и в искусственных елово-лиственничных лесопосадках; *P. grandiflora* в березовых лесах, реже на лугах. *P. vulgaris* приурочена к местам полуоткрытым или светло-лесным с увлажнением от сублесолугового до влажно-лесолугового с небогатыми или довольно богатыми почвами. *P. grandiflora* произрастает на полуоткрытых пространствах и в светлых лесах с увлажнением от влажно-степного до сухолесолугового с небогатыми почвами. Оба вида встречаются на очень бедных и бедных азотом, имеющих слабокислую и кислую среду почвах. По фактору кислотности почвы амплитуда экологического пространства ценопопуляций *P. grandiflora* на исследованной территории выходит за пределы диапазонов экологического ареала по шкалам Д.Н. Цыганова (1983).
- 2. Уровень изменчивости большинства количественных признаков надземной части *P. vulgaris* не зависит от типа сообщества, при этом средние значения коэффициентов вариации выше в сосновых лесах, чем на лугах. У *P. grandiflora* большинство морфометрических признаков варьирует в разных органах и зависит от типа сообщества: в луговых сообществах отмечена максимальная вариабельность признаков листа и минимальная изменчивость признаков побега и соцветия. В березовых лесах отмечена обратная закономерность.
- 3. Количественные характеристики морфологических признаков листа *P. vulgaris* и *P. grandiflora* зависят от экологических условий произрастания и отличаются в разных типах сообществ. Установлена связь большинства изученных морфологических признаков растений *P. vulgaris* с освещенностью, влажностью и уровнем трофности почвы, а *P. grandiflora* с кислотностью и уровнем доступного азота в почве.
- 4. Методами ВЭЖХ в метанольных экстрактах листьев *P. vulgaris* и *P. grandiflora* обнаружены фенолкарбоновые кислоты: розмариновая, сиреневая, феруловая, *n*-кумаровая и кофейная. По качественному составу фенолкарбоновых кислот различий у двух видов *Prunella* не обнаружено. Сиреневая кислота была идентифицирована впервые. Установлено, что у *P. grandiflora* независимо от условий произрастания доминируют среди фенолкарбоновых кислот розмариновая (70-89 %) и феруловая кислоты (3,5-12,5 %), у *P. vulgaris* розмариновая (82-88 %) и сиреневая (7,9-10,7 %). Соотношение остальных фенолкарбоновых кислот меняется в зависимости от условий произрастания. Выявлено, что вне зависимости от года содержание розмариновой кислоты выше у *P. grandiflora*, чем у *P. vulgaris*.
- 5. В условиях интродукции содержание фенольных соединений и розмариновой кислоты в листьях *P. grandiflora* остается таким же высоким, как в естественных условиях произрастания, а у *P. vulgaris* увеличивается в 2,5-3 раза.
- 6. Исследование динамики накопления розмариновой кислоты в органах растений по фенофазам показало, что для получения высокопродуктивного

лекарственного сырья сбор надземной и подземной массы P. vulgaris следует проводить в фазы вегетации и цветения, а P. grandiflora — в фазу цветения.

7. Фитокомпозиции на основе этанольных экстрактов из листьев *P. vulgaris* и *P. grandiflora* обладают выраженным противовоспалительным, ранозаживляющим, противоожоговым действием и могут быть рекомендованы для разработки узконаправленного лекарственного средства.

### СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ ПО ТЕМЕ ДИССЕРТАЦИИ

#### Публикации в изданиях, рекомендованных ВАК:

- 1. **Болотник, Е.В.** Содержание веществ фенольной природы рода *Prunella* L. и рода *Silybum* L. в условиях интродукции на Среднем Урале / Е.В. Болотник, Е.А. Кошелева, А.А. Ермошин // Аграрный вестник Урала. -2012. -№ 7 C. 22-24.
- 2. **Болотник, Е.В**. Морфологическая изменчивость и содержание фенольных соединений *Prunella vulgaris* и *Prunella grandiflora* (Lamiaceae ) на Среднем Урале/ Е.В. Болотник, Л.И. Алексеева, С.И. Неуймин // Растительные ресурсы. 2013. Вып. 2. С. 153-163.
- 3. Алексеева, Л.И. Розмариновая кислота и антиоксидантная активность *Prunella grandiflora* и *Prunella vulgaris* (Lamiaceae) / Л.И. Алексеева, **Е.В. Болотник** // Растительный мир Азиатской России. -. 2013. № 1 (11).- С. 121–125.

#### В других изданиях:

- 4. **Болотник**, **Е.В.** Род *Prunella* L.: перспективный источник биологически активных соединений фенольной природы / Е.В. Болотник // Тезисы докладов и стендовых сообщений XXIV Зимней молодежной научной школы «Перспективные направления физикохимической биологии и биотехнологии». (7-9 февраля 2012 г.) Москва, 2012. С.81.
- 5. **Болотник, Е.В.** Основные принципы выделения диагностических признаков на примере видовых представителей семейств Lamiaceae и Asteraceae в условиях интродукции в Ботаническом саду УрО РАН / Е.В. Болотник, Е.А. Кошелева // Биология, химия, физика: вопросы и тенденции развития: материалы международной заочной научно-практической конференции. (01 февраля 2012 г.) Новосибирск: Изд. «ЭКОР-книга», 2012. С. 22-27.
- 6. Алексеева, Л.И. Розмариновая кислота и антиоксидантная активность *Prunella grandiflora* L. и *Prunella vulgaris* L. / Л.И. Алексеева, **Е.В. Болотник** // Новые достижения в химии и химической технологии растительного сырья: материалы V Всероссийской конференции с международным участием. 24-26 апреля 2012 г. Барнаул: Изд-во Алт. Ун-та, 2012. С. 198 199.
- 7. **Болотник, Е.В.** Изучение межвидовой изменчивости близкородственных видов рода *Prunella* L. в фазу вегетации в условиях интродукции в Ботаническом саду УрО РАН / Е.В. Болотник // Мамаевские чтения: сборник материалов региональной научной конференции, посвященной 75-летию Ботанического сада УрО РАН и памяти члена-корреспондента РАН С.А. Мамаева (Екатеринбург 12-14 августа 2011 г.). Екатеринбург: ООО "УИПЦ", 2012. С. 15-19.
- 8. **Болотник, Е.В.** Внутривидовая изменчивость видов рода *Prunella* L. (Lamiaceae Lindl.) / Е.В. Болотник, Л.И. Алексеева, С.И. Неуймин // Актуальные проблемы экологии : материалы VIII междунар. науч.-практ. конф. (Гродно, 24 26 окт. 2012 г.). 2012. С. 139-141.
- 9. Алексеева, Л.И. Динамика содержания розмариновой кислоты *Prunella vulgaris* L. и *Prunella grandiflora* L. / Л.И. Алексеева, **Е.В. Болотник**// Химия и технология растительных веществ: материалы VIII Всероссийской научной конференции. 7-10 октября 2013 г. Сыктывкар-Калининград: Изд-во Балтийского федерального университета им. И. Канта, 2013. С. 25.

- 10. **Болотник, Е.В.** Ранозаживляющая активность фитокомпозиций на основе экстракта *Prunella* L. при лечении термических ожогов / Е.В. Болотник, Л.И. Алексеева, Л.П. Ларионов // Новые достижения в химии и химической технологии растительного сырья: материалы VI Всероссийской конференции с международным участием. 22-24 апреля 2014 г. Барнаул: Изд-во Алт. Ун-та, 2014. С. 184 186.
- 11. **Болотник, Е.В.** Морфологические и биохимические характеристики вида *Prunella grandiflora* L. и их взаимосвязь на северной границе ареала / Е.В. Болотник // Перспективы развития и проблемы современной ботаники: Материалы III (V) Всероссийской молодежной конференции с участием иностранных ученых (10–14 ноября 2014 г., г. Новосибирск) Новосибирск: Изд-во «Академиздат», 2014. С. 130 131.
- 12. **Болотник, Е.В.** Содержание розмариновой кислоты в связи с изменчивостью морфологических параметров листьев у видов рода *Prunella* / Е.В. Болотник // Ботанические сады: от фундаментальных проблем до практических задач: сборник статей участников Всероссийской научно-практической конференции молодых ученых «Ботанические сады: от фундаментальных проблем до практических задач» (7-10 октября 2014 г.) Екатеринбург, 2014 г. С. 9 -11.
- 13. **Болотник, Е.В.** Эколого-ценотическая характеристика сообществ с участием видов рода *Prunella* L. / Е.В. Болотник // Материалы XIII Международной научно-практической конференции «Современная биология: актуальные вопросы» (Россия, г. Санкт-Петербург, 16-17.10.2015) С. 23-25.
- 14. **Болотник, Е.В.** Морфо биологические особенности видов рода *Prunella* L. на Среднем и Южном Урале/ Е.В. Болотник // Тезисы докладов III (XI) Международной Ботанической конференции молодых ученых в Санкт-Петербурге 4-9 октября 2015 года. Спб.: БИН РАН, 2015. С. 56-57.
- 15. **Болотник, Е.В.** Разработка фитокомпозиции с ранозаживляющей активностью на основе экстрактов рода *Prunella* L. / Е.В. Болотник // Материалы докладов XXII Всероссийской молодежной научной конференции "Актуальные проблемы биологии и экологии" (Коми НЦ УрО РАН). Сыктывкар, 2015. С. 204 208.

#### Патенты:

16. **Болотник, Е.В.** Патент 2552790 С1 Российская Федерация, МПК А61К36/53, А61Р17/02. Противоожоговая композиция / Болотник Е.В., Алексеева Л.И., Ларионов Л.П., Гаврилов А.С.; заявитель и патентообладатель ФГБУН Институт биологии Коми научного центра Уральского отделения Российской академии наук, ФГБУН Ботанический сад Уральского отделения Российской академии наук — №2014100947/15; заявл. 13.01.14; опубл. 10.06.15

Подписано в печать ...... г. Объем 1.0 п.л. Тираж 100 экз. Заказ № ...... Издательско-полиграфический центр УрФУ. 620083 г. Екатеринбург, ул. Тургенева, 4